

CHEMISTRY

- 1. Name of the polymer which is named as orlon is
 - (3) Polyacrylonitrile (4) Polyethene (1) Polyamide (2) Polycarbonate
- Ans. (3)
- If radius of hydrogen in ground state is 51 pm, find out the radius of fifth orbit of Li²⁺ ions 2. 425 Ans.

Sol.
$$R_0 = 0.059 \times \frac{n^2}{Z}$$
 $\begin{pmatrix} n = 1 \\ z = 1 \end{pmatrix}$
 $[r_0 = 0.059 \times]$
 $\begin{pmatrix} r_n \propto \frac{n^2}{Z} \end{pmatrix}$ $r_n = k \frac{n^2}{Z}$ $\begin{pmatrix} n = 1 \\ Z = 1 \end{pmatrix}$
 $\phi 51 = \frac{k \times (1)^2}{(4)}$
 $k = 51$
 $\begin{pmatrix} r_n \end{pmatrix}_{li^{2t}} = k \left(\frac{(5)^2}{3} \right)$ $\begin{bmatrix} n = 5 \\ Z = 3 \end{pmatrix}$
 $= 51 \times \frac{25}{3}$
 $= 17 \times 25$
 $\begin{pmatrix} r_{s^{th}} \end{pmatrix}_{li^{2t}} = 425 \text{ pm}$

- 3. In a compound, atoms of element Y form ccp lattice and those of element X occupy 1/3rd of tetrahedral voids. The formula of the compound will be :
- Ans. X_2Y_3

 $y = 4 \left(8 \times \frac{1}{8} + \frac{6 \times 1}{2} \right) = 4$ Sol. $x = \frac{8}{3}$

Assertion : In a complex, $[Fe(H_2O)_6]^{+2}$ the magnetic moment is 5.92 BM and in $[Fe(CN)_6]^{3-}$ magnetic 4. moment is 1.73 BM

Reason: In both the complex compound iron is in +3 oxidation state

In the light of the above statements. Choose the correct answer from the options given below (1) Both A and R are true and R is the correct explanation of A

- (2) Both A and R are true but R is NOT the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true
- (2) Ans.

5. Match the column:

Column-I

Column-II

- (A) Vitamin A (B) Riboflavin
- (C) Ascorbic Acid
- (D) Thiamine

(P)Xerophthalmia (Q) Beri-Beri (R)Scurvy (S)Cheilosis

(1) (A)-(P); (B)-(S); (C)-(R); (D)-(Q) (2) (A)-(Q); (B)-(P); (C)-(P); (D)-(S) (3) (A)-(R); (B)-(Q); (C)-(S); (D)-(P) (4) (A)-(P); (B)-(Q); (C)-(R); (D)-(S) (1) Ans. 6. Photochemical smog found mainly in (1) Industrial area (2) Marshy place (3) Hilly area of Himachal (4) Cold humid climate (1) Ans. $A_2B_3 \implies 2A^{3+} + 3B^{2-}$ 7. If equilibrium constant is K, then find the degree of dissociation α . Κ Ans. (108C⁴) $A_2B_3 \implies 2A(g) + 3B(g)$ Sol. С C-Ca 2Cα $\mathsf{K}_{eq} = \; \frac{(2C\alpha)^2 (3\alpha)^3}{C-C\alpha} \; \Rightarrow \; \frac{4C^2 \alpha^2 \times 27C^3 \alpha^3}{C(1\!-\!\alpha)} \;$ $1 - \alpha = 1$ $k = \frac{108C^4\alpha^5}{1}$ $\alpha = \left(\frac{k_{eq}}{108C^4}\right)^{1/5}$ 8. Which of the following has square pyramidal shape : (1) XeOF₄ (2) BrF_3 (3) XeF₄ (4) XeO₃ Ans. (1) $F \xrightarrow{0}_{xe} F \xrightarrow{F}_{Square Pyramidal}$ Sol. $\begin{array}{c} O \\ \blacksquare \\ -C - CH_3 \end{array} (P)$ 9. CH₂COOH Product (P) and (Q) are respectively ∕NH–C–CH₃ NH-CH₂-CH₃ and (1)O Ⅱ NH–C–CH₃ CH₂–NH–CH₃ and (2)

	(3) O NH-CH ₂ -CH ₃ and O NH-C-CH ₃ (4) O NH-CH-CH ₃ and O NH-C-CH ₃ (4) O NH-CH-CH ₃ and O Br						
Ans.	(3)						
10. Ans.	Among Ne, F, Cl, Ar which el (1) Ne–Cl (2) Ne- (1)		ghest difference betw (3) Ne–F	veen electron gain enthalpy (4) F–Cl			
11.	The correct set of strong ox Ce ⁴⁺ , Yb ²⁺ , Tb ⁴⁺ , Eu ²⁺ (1) Ce ⁴⁺ & Eu ⁺² (2) Yb ⁺	(4) Tb ⁴⁺ & Eu ⁺²					
Ans.	(1)						
12. Ans.	Column-I Name Reaction (A) Etard Reaction (B) Iodoform Reaction (C) Gatterman Reaction (D) HVZ Reaction (1) (A)-(R); (B)-(P); (C)-(Q); (D) (3) (A)-(Q); (B)-(R); (C)-(S); (D) (1)		S_2 , H_3O^+				
13. Ans.		mpound Type of Bond N_2O (P) N—N Bond N_2O_4 (Q) N—O—N B N_2O_5 (R) N=O Bond		nd Bond d N≡N Bond (2) (A)-(S); (B)-(R); (C)-(Q); (D)-(P)			
14. Ans.	Which of the following is used for setting c (1) Gypsum (2) Clay (1)		of cement (3) Lime Stone	(4) Sillica			

We are given with the reaction 15.

R—CH₂—Br + Nal <u>Acetone</u> → RI + NaBr

- (1) This reaction is called Swarts reaction.
- (2) This reaction can also take place in acetic acid
- (3) This reaction will take place even if Br is replaced with F
- (4) This reaction shifts in forward direction using the principle of Le Chatelier's principle

(4) Ans.

16. Which of the reaction is correct among the following with appropriate enzyme?

- (1) Sucrose \longrightarrow Glucose + Fructose : Enzyme Invertase
- (2) Glucose \longrightarrow CO₂ + Ethanol : Enzyme Maltase
- (3) Protein \longrightarrow Aminoacid : Enzyme Zymase
- (4) Starch \longrightarrow Maltose : Enzyme Pepsin

Ans. (1)

17. Compound "P" with molecular formula $C_{14}H_{13}ON$ is hydrolysed to give 'Q' and 'R'. Compound 'Q' gives effervescence with NaHCO₃ while compound R react with Hinsberg reagent to give oily liquid which react with NaOH.

$P \longrightarrow Q +$	R
Give	React with
Effervescence	Hinsberg reagent
With NaHCO₃	

Find the products Q and R respectively;

- (1) C_6H_5COOH and $C_6H_{13}NH_2$

(2) C_6H_5COOH and $C_6H_5CH_2NH_2$

(4) CH₃(CH₂)₄CONH₂ and CH₃(CH₂)₅COOH

- (2) $CH_3(CH_2)_4COOH$ and $CH_3(CH_2)_6NH_2$
- (2)Ans.
- According to Bohr's atomic theory: 18.
 - (A) Kinetic energy of electron is $\propto \frac{z^2}{n^2}$
 - (B) The product of velocity (v) of electron and principle quantum number of 'vn' $\propto Z^2$
 - (C) Frequency of revolution of electron in an orbit is $\propto \frac{Z^3}{3}$
 - (D) Coulombic force of attraction of on the electron is $\propto \frac{z^3}{z^4}$

Choose the most appropriate answer from the options give below.

- (1) (A), (C) and (D) only (2) (A) only (4) (A) and (D) only
- (3) (C) only (4)
- K.E = T.E = 13.6 $\frac{z^2}{12}$ Sol.

Ans.

$$h \times v = v_0 \times \frac{z}{n} \times n \qquad f = k \frac{q_1 q_2}{r^2}$$
$$h v \propto \alpha z \qquad = k \frac{(Ze)(e)}{\left(r_0 \frac{n^2}{z}\right)}$$

if =
$$\frac{v}{2\pi R} = \frac{v_0 \frac{Z}{n}}{2\pi v_0 \times \frac{n^2}{z}}$$

force $\propto \frac{z^3}{n^4}$; f $\propto \frac{z^2}{n^3}$

19. An ideal gas is allowed to expand form 1 L to 10 L against a constant external pressure of 1 bar. The work done in kJ is:

(1) +10.0 (2) -0.9 (3) -2.0 (4) -9.0

Ans. (2)

Sol. $w = -(9) \times 0.1 = -0.9 \text{ kJ}$

- 20.The number of radial and angular nodes in 4d-orbital are respectively
(1) 1 and 2
(2) 3 and 2
(3) 1 and 0(4) 2 and 1Ans.(1)Sol.4d
(n l 1) = radial node
4 2 1 = 1
l = 2
- **21.** Some amount of urea is added to 1000 gm of H₂O due to which the vapour pressure decreases by 25% of the original vapour pressure. Find out the mass of urea added (Round off 2 decimal places)

Ans. 1111.11

Sol.

 $\frac{P^{\circ} - P}{P^{\circ}} = X_{\text{solute}}$ $\frac{P^{\circ} - P}{P^{\circ}} = \frac{n}{n + N} \quad (n = \text{mole of solute, N = mole of solvent})$ $\frac{100 - 75}{100} = \frac{\frac{W}{60}}{\frac{W}{60} + \frac{1000}{18}}$ $\frac{1}{4} = \frac{W}{60\left(\frac{W}{60} + \frac{1000}{18}\right)}$ $W + \frac{1000 \times 60}{18} = 4W$ $\frac{1000 \times 60}{18} = 3W$ W = 1111.11 gm

Match column-I (Compound) with column-II final product obtained during their qualitative 22. analysis)

	analysisj							
		Column-I		Column-II				
		(A)	Nitrogen	(P)	AgX			
		(B)	Sulphur	(Q)	(NH ₄) ₃ PO ₄ .12 MoO ₃			
		(C)	Phosphorous	(R)	Fe(SCN)₃			
		(D)	Halogens	(S)	Fe ₄ [Fe(CN) ₆] ₃			
	(1) A \rightarrow P; B \rightarrow R; C \rightarrow	• Q, D	\rightarrow S	(2)	$A \rightarrow R; B \rightarrow P; C \rightarrow Q,$, $D \rightarrow S$		
	(3) A \rightarrow S; B \rightarrow R; C –	(3) $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow Q$, $D \rightarrow P$		(4) $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$, $D \rightarrow S$				
Ans.	(3)							
23.	Find log k, if ΔH° = -54.07 kJ/mol & T = 298 K, ΔS° = 10 J/mol K.							
	Also given 2.303 × 29	8 = 5	705.					
Ans.	1.2							
Sol.	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} \qquad \dots \dots (1)$							
	∆G° = –RT lnk							
	∆G° = -2.303 RT log K(2)							
	From eq. (1) & (2)							
	-2.303 RT logK = ΔH° - TΔS° -2.303 × 8.314 × 298 log K = $\frac{-54.07 - 2.98 \times 10}{1000}$							
	Log K = 1.2							
24.	Oxidation state of Mo in Ammonium Phosphomolybdate is:							
Ans.	6							
Sol.	(NH ₄) ₃ PO _{4.} 12MoO ₃							
	$2(\pm 1) \pm (-2) \pm 10^{\circ} \pm 2$	E(-2)	$\gamma = 0$					

```
Sol.
       3(+1) + (-3) + 12x + 36(-2) = 0
       x = +6
```