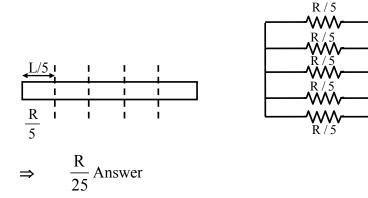


PHYSICS

SECTION-A

1. Which among the following is forward biased:

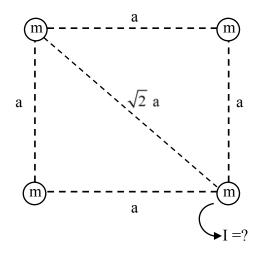


Sol. Basic theory.

2. A uniform and homogeneous rod has resistance R. If rod is cut into 5 equal parts and connected in parallel find equivalent resistance ?

Ans. $\frac{R}{25}$

Sol.


- 3. Acceleration due to earth on the surface is g_0 . If mass of earth remains same but radius is half, then find the acceleration on the surface for new system :
 - (1) $\frac{g_0}{2}$ (2) g_0 (3) 2 g_0 (4) 4 g_0

Ans. (D)

Sol.
$$g_0 = \frac{Gm}{R^2}$$

$$g = \frac{Gm}{(R/2)^2} = \frac{4Gm}{R^2} = 4g_0$$

4. Find moment of inertia about an axis passing though one corner and perpendicular to the plane.

Ans. 4 ma^2

Sol. $I = ma^2 + ma^2 + m\left(\sqrt{2} a\right)^2 + 0 = 4 ma^2$

5. Two particles having mass 4g & 25g have same kinetic energy. Find ratio of their momentum?

(1)
$$\frac{2}{5}$$
 (2) $\frac{2}{3}$ (3) $\frac{4}{5}$ (4) $\frac{3}{4}$

Ans. (1)

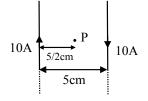
Sol.
$$KE_1 = KE_2$$

$$\frac{P_1^2}{2m_1} = \frac{P_2^2}{2m_2}$$
$$\frac{P_1}{P_2} = \sqrt{\frac{m_1}{m_2}} = \sqrt{\frac{4}{25}} = \frac{2}{5}$$

6. An object of mass 1000 kg is moving with 6 m/s. Find speed of object is mass 200 kg is added to it ?

(1) 4 m/s (2) 5 m/s (3) 8 m/s (4) 6 m/s

Ans. (2)


Ē

Sol. Linear momentum is conserved.

 $1000 \times 6 = 1200 (v_f)$

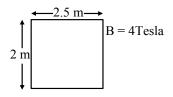
 \therefore $v_f = 5 m/s$

7. Two very long wire having current as shown. Find the magnetic field at point 'P' (in micro tesla).

Ans. 160

Sol.
$$\mathbf{B} = \frac{\mu_0 \mathbf{I}}{2\pi \mathbf{D}} \times 2$$
$$\mathbf{B} = \frac{2 \times 10^{-7} \times 10}{\frac{5}{2} \times 10^{-2}} \times 2$$
$$\mathbf{B} = 16 \times 10^{-5} \text{ Tesla}$$
$$\mathbf{B} = 160 \ \mu \text{T}$$

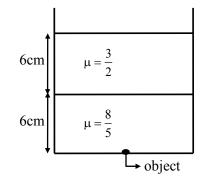
8. If the electron revolving in the third Bohr's orbit of hydrogen species has radius R, then what will be its radius in fourth orbit in terms of R.


(1)
$$\frac{25R}{9}$$
 (2) $\frac{16R}{9}$ (3) $\frac{36R}{9}$ (4) $\frac{9R}{16}$
Ans. (B)
Sol. $\mathbf{R} = \frac{\mathrm{kn}^2}{Z}$
 $\frac{R}{\mathrm{R'}} = \frac{\frac{\mathrm{k3}^2}{Z}}{\frac{\mathrm{k4}^2}{Z}}$
 $\Rightarrow \quad \frac{R}{\mathrm{R'}} = \frac{9}{16}$
 $\Rightarrow \quad \mathrm{R'} = \frac{16}{9}\mathrm{R}$

9. A charge of magnitude $10^{-6}\mu$ C is placed at origin in x-y co-ordinate system. Find the potential difference between the two point $(\sqrt{3}, \sqrt{3})$ and $(\sqrt{6}, 0)$. (Axis are in meters)

(1)
$$3\sqrt{3} \times 10^3 \text{V}$$
 (2) $\frac{3}{\sqrt{3}} \times 10^3 \text{V}$

(3) 0V (4)
$$2\sqrt{3} \times 10^3$$
 V

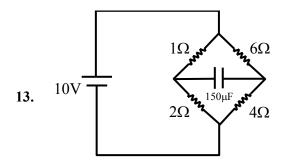

- Ans. (3)
- **Sol.** Same radial distance from origin Hence Potential is same at the two given point. Thus potential difference is zero
- 10. Magnetic field having magnitude 4 Tesla makes an angle 60° with perpendicular to loop and loop has been removed from magnetic field region within 10 seconds. Find average induced emf in loop in 10 seconds in Volts?

Ans. 1

Sol.
$$e_{avg} = \frac{\Delta \phi}{\Delta t} = \frac{BA \cos \theta}{10}$$

= $4 \times 2 \times \frac{5}{2} \times \frac{\cos 60}{10} = 1$ volt

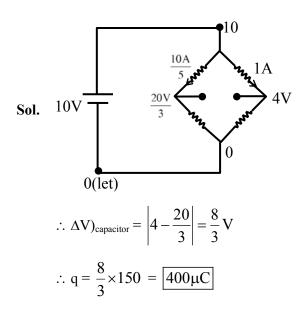
11. Find apparent depth of the object shown in figure ?



Ans. $\frac{31}{4}$

Sol. Apparent depth =
$$\frac{6}{3/2} + \frac{6}{8/5} = 4 + \frac{15}{4} = \frac{31}{5}$$
 cm

- 12. An EM wave is given by $E = 200 \sin [1.5 \times 10^7 t - 0.05 x] \text{ N/C}$ Find the intensity of wave. [$\epsilon_0 = 8.85 \times 10^{-12} \text{ SI units}$]
- Ans. 53.1


Sol.
$$\mathbf{I} = \frac{1}{2} \varepsilon_0 E_0^2 . C_{mid}$$

 $\mathbf{I} = \frac{1}{2} \times 8.85 \times 10^{-12} \times [200]^2 \frac{1.5 \times 10^7}{0.05}$
 $\mathbf{I} = 53.1 \text{ W/m}^2$

Find charge on capacitor at steady state?

(1) 200 µC	(2) 300 μC	(3) 400 µC	(4) 500 μC
------------	------------	------------	------------

Ans. (3)

14. A particle performs SHM with an amplitude 4 cm. Speed of particle at mean position is 10 cm/sec. Find position from mean where speed is 5 cm/sec

(1) 2 cm (2) $2\sqrt{3}$ cm (3) 0.5 cm (4) $\sqrt{3}$ cm Ans. (2) Sol. 10 cm/s = A ω ...(i) 5 cm/s = $\omega\sqrt{A^2 - x^2}$...(ii) using (i) and (ii)

 $\mathbf{x} = \frac{\sqrt{3}A}{2} = 2\sqrt{3} \text{ cm}$

15. Given :

m = 0.08 kgs_v = 0.17 kcal/kg-°C $\Delta T = 5^{\circ}C$

Find change in internal energy (in Joule) of gas.

Ans. 284

- Sol. $\Delta U = ms_v \Delta T$ $\Delta U = 0.08 \times 0.17 \times 10^3 \times 5$ $\Delta U = 68 \text{ cal}$ $\Delta U = 284.24 \text{ Joule}$
- 16. A gas undergoes isothermal expansion from 30 dm³ to 45 dm³. Find heat absorbed by gas if external pressure is 10 kPa?

(1) 100 J (2) 150 J (3) 120 J (4) 200 J

Ans. (C)

Sol.
$$\Delta V = 0$$

 $\therefore \Delta Q = W$
 $= nRT \ell n\left(\frac{V_2}{V_1}\right)$
 $= P_1 V_1 \ell n\left(\frac{V_2}{V_1}\right)$
 $= 10 \times 10^3 \times 30 \times 10^{-3} \ell n\left(\frac{3}{2}\right)$
 $= 300 \times 0.4$
 $= 120 J$

17. A banked road of radius 400 m is there with base separation between the rails is 1.5 m, if speed of a car for safe turning is 12 m/s, then find height of one rail w.r.t to second rail?

(1) h = 0.054 m (2) h = 0.1 m (3) h = 0.001 m (4) h = 0.2 m

Ans. (1)

18. A particle is moving from origin with initial velocity $5\hat{i}$ m/s and constant acceleration $3\hat{i}+2\hat{j}$ m/s². When position of particle is 84 m, its velocity is $\sqrt{\alpha}$ m/s. Find out α :

Ans. 673
Sol.
$$x = u_x t + \frac{1}{2}a_x t^2$$

 $84 = 5t + \frac{3}{2}t^2$
 $t = 6 \sec.$
 $\dot{v} = \dot{u} + \dot{a}t$
 $\dot{v} = 5\hat{i} + (3\hat{i} + 2\hat{j})$
 $= 23\hat{i} + 12\hat{j}$
 $= 529 + 144$
 $= \sqrt{673} \text{ m/s}$
 $\alpha = 673$

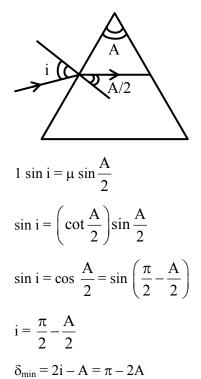
6

- 19. Statement-1 : Angular momentum and Plank constant have same dimensions.Statement-2 : Moment of force and linear momentum have same dimensions.
 - (1) Both statements are true
 - (2) Both statements are false
 - (3) Statement 1 is true and 2^{nd} is false
 - (4) Statement 2 is true and 1st is false

Sol.
$$L = \frac{nh}{2\pi}$$
, $F = \frac{dp}{dt}$
 $[L] = M^{1}L^{2}T^{-1}$
 $[h] = ML^{2}T^{-1}$
 $[\tau] = M^{1}L^{2}T^{-2}$
 $[P] = M^{1}L^{1}T^{-1}$

- **20.** A proton is moving in gravity free space with constant velocity v and goes undeviated. What can be the possible conditions.
 - (A) E = 0, B = 0(B) $E = 0, B \neq 0$ (C) $E \neq 0, B = 0$ (D) $E \neq 0, B \neq 0$ (1) A, B, D (2) A, B, C (3) A, B, C, D (4) B, C, D (1)
- Ans. (1)
- 21. $S_1 \rightarrow$ Viscosity coefficient of gas is less than liquid.

 $S_2 \rightarrow$ Surface tension decreases if insoluble impurities are added.

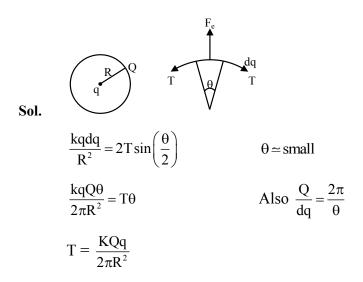

- (1) S_1 is true, S_2 is true
- (2) S_1 is false, S_2 is false
- (3) S_1 is true, S_2 is false
- (4) S_1 is false, S_2 is true
- Ans. (1)

22. There in a prism of apex angle of 'A'. Its refractive index is equal to Cot $\frac{A}{2}$, then find minimum angle of

deviation?

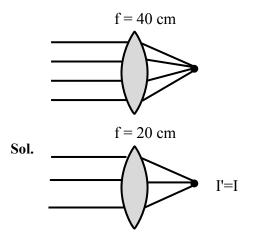
Ans. 2

Sol.



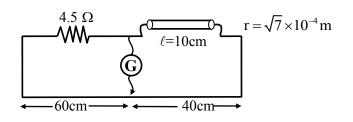
Alternate Solution

$$n = \frac{\sin \frac{A + \delta_{\min}}{2}}{\sin \frac{A}{2}}$$
$$\frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} = \frac{\sin \frac{A + \delta_{\min}}{2}}{\sin \frac{A}{2}}$$
$$\Rightarrow \delta_{\min} = \pi - 2A$$


23. A point charge q is placed at a centre of a charged ring of total charge Q. Find tension in the ring.

Ans. $\frac{KQq}{2\pi R^2}$

24. Light in incident on a convex lens of focal length 40 cm. And a metal plate is placed on focus of lens & photo current is measure to be I. Find new photocurrent if lens is replaced by another lens focal length of 20 cm & metal plate is kept on its focus?


Ans. I'=I

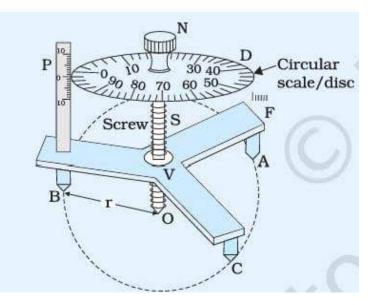
25. In meter bridge experiment there is a resistance in right slot of length 10 cm and radius of cross section is $\sqrt{7} \times 10^{-4}$ m. In left slot these is a resistance of 4.5 Ω . If balance length from left is 60 cm. If unknown resistivity is x × 10⁻⁷. Find 'x'.

Ans. 66

Sol.

$$\frac{60}{40} = \frac{4.5}{R} \qquad \Rightarrow \qquad R = 3\Omega$$

$$R = \frac{\rho\ell}{A}$$


$$3 = \rho \times \frac{1}{10 \times \pi \times 7 \times 10^{-8}} \Rightarrow \qquad \rho = 21\pi \times 10^{-7} = 21 \times \frac{20}{7} \times 10^{-7} = 66 \times 10^{-7} = x \times 10^{-7}$$

$$x = 66$$

- 26. Spherometer can't be used for measurement of :
 - (1) Radius of curvature of convex mirror
 - (2) Radius of curvature of concave mirror
 - (3) Thickness of capacitor plates
 - (4) Specific rotation of liquid
- **Ans.** (4)

Ē

Sol. Spherometer is used to measure radius of curvature of any spherical surface and any small thickness.

